Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 99(6): 1220-1241, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31125454

RESUMEN

The accumulation of secondary metabolites and the regulation of tissue acidity contribute to the important traits of grape berry and influence plant performance in response to abiotic and biotic factors. In several plant species a highly conserved MYB-bHLH-WD (MBW) transcriptional regulatory complex controls flavonoid pigment synthesis and transport, and vacuolar acidification in epidermal cells. An additional component, represented by a WRKY-type transcription factor, physically interacts with the complex increasing the expression of some target genes and adding specificity for other targets. Here we investigated the function of MBW(W) complexes involving two MYBs (VvMYB5a and VvMYB5b) and the WRKY factor VvWRKY26 in grapevine (Vitis vinifera L.). Using transgenic grapevine plants we showed that these complexes affected different aspects of morphology, plant development, pH regulation, and pigment accumulation. Transcriptomic analysis identified a core set of putative target genes controlled by VvMYB5a, VvMYB5b, and VvWRKY26 in different tissues. Our data indicated that VvWRKY26 enhances the expression of selected target genes induced by VvMYB5a/b. Among these targets are genes involved in vacuolar hyper-acidification, such as the P-type ATPases VvPH5 and VvPH1, and trafficking, and genes involved in the biosynthesis of flavonoids. In addition, VvWRKY26 is recruited specifically by VvMYB5a, reflecting the functional diversification of VvMYB5a and VvMYB5b. The expression of MBWW complexes in vegetative organs, such as leaves, indicates a possible function of vacuolar hyper-acidification in the repulsion of herbivores and/or in developmental processes, as shown by defects in transgenic grape plants where the complex is inactivated.


Asunto(s)
ATPasas Tipo P/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Vitis/metabolismo , Antocianinas/metabolismo , Transporte Biológico , Flavonoides/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , ATPasas Tipo P/genética , Petunia/genética , Petunia/metabolismo , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Factores de Transcripción/genética , Transcriptoma/genética , Vacuolas/genética , Vitis/genética
2.
Front Plant Sci ; 8: 1002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680428

RESUMEN

The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines.

3.
Front Plant Sci ; 8: 630, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28512461

RESUMEN

Leaf removal is a grapevine canopy management technique widely used to modify the source-sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome transcriptomic approach was exploited showing an extensive transcriptome rearrangement in berries defoliated before flowering. Nevertheless, the extent to which these transcriptomic reactions could be manifested by different genotypes and growing environments is entirely unexplored. To highlight general responses to defoliation vs. different locations, we analyzed the transcriptome of cv. Sangiovese berries sampled at four development stages from pre-flowering defoliated vines in two different geographical areas of Italy. We obtained and validated five markers of the early defoliation treatment in Sangiovese, an ATP-binding cassette transporter, an auxin response factor, a cinnamyl alcohol dehydrogenase, a flavonoid 3-O-glucosyltransferase and an indole-3-acetate beta-glucosyltransferase. Candidate molecular markers were also obtained in another three grapevine genotypes (Nero d'Avola, Ortrugo, and Ciliegiolo), subjected to the same level of selective pre-flowering defoliation (PFD) over two consecutive years in their different areas of cultivation. The flavonol synthase was identified as a marker in the pre-veraison phase, the jasmonate methyltransferase during the transition phase and the abscisic acid receptor PYL4 in the ripening phase. The characterization of transcriptome changes in Sangiovese berry after PFD highlights, on one hand, the stronger effect of environment than treatment on the whole berry transcriptome rearrangement during development and, on the other, expands existing knowledge of the main molecular and biochemical modifications occurring in defoliated vines. Moreover, the identification of candidate genes associated with PFD in different genotypes and environments provides new insights into the applicability and repeatability of this crop practice, as well as its possible agricultural and qualitative outcomes across genetic and environmental variability.

4.
J Vis Exp ; (116)2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27768042

RESUMEN

Terroir refers to the combination of environmental factors that affect the characteristics of crops such as grapevine (Vitis vinifera) according to particular habitats and management practices. This article shows how certain terroir signatures can be detected in the berry metabolome and transcriptome of the grapevine cultivar Corvina using multivariate statistical analysis. The method first requires an appropriate sampling plan. In this case study, a specific clone of the Corvina cultivar was selected to minimize genetic differences, and samples were collected from seven vineyards representing three different macro-zones during three different growing seasons. An untargeted LC-MS metabolomics approach is recommended due to its high sensitivity, accompanied by efficient data processing using MZmine software and a metabolite identification strategy based on fragmentation tree analysis. Comprehensive transcriptome analysis can be achieved using microarrays containing probes covering ~99% of all predicted grapevine genes, allowing the simultaneous analysis of all differentially expressed genes in the context of different terroirs. Finally, multivariate data analysis based on projection methods can be used to overcome the strong vintage-specific effect, allowing the metabolomics and transcriptomics data to be integrated and analyzed in detail to identify informative correlations.


Asunto(s)
Metabolómica , Transcriptoma , Vitis , Agricultura , Ambiente , Frutas , Perfilación de la Expresión Génica , Metaboloma
5.
Plant Physiol ; 169(3): 1897-916, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26395841

RESUMEN

Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro.


Asunto(s)
Aciltransferasas/genética , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Vitis/enzimología , Acilación , Aciltransferasas/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Vitis/genética
6.
Plant J ; 68(1): 11-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21623977

RESUMEN

Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida.


Asunto(s)
Petunia/genética , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Transcriptoma , Secuencia de Bases , Secuencia de Consenso , Regulación hacia Abajo/genética , Flores/citología , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Petunia/química , Petunia/citología , Petunia/fisiología , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Proantocianidinas/análisis , ARN de Planta/genética , Plantones/citología , Plantones/genética , Plantones/fisiología , Semillas/química , Semillas/citología , Semillas/genética , Semillas/fisiología , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
7.
Plant Cell ; 15(11): 2680-93, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14576291

RESUMEN

We have initiated a systematic functional analysis of the MADS box, intervening region, K domain, C domain-type MADS box gene family in petunia. The starting point for this has been a reverse-genetics approach, aiming to select for transposon insertions into any MADS box gene. We have developed and applied a family signature insertion screening protocol that is highly suited for this purpose, resulting in the isolation of 32 insertion mutants in 20 different MADS box genes. In addition, we identified three more MADS box gene insertion mutants using a candidate-gene approach. The defined insertion lines provide a sound foundation for a systematic functional analysis of the MADS box gene family in petunia. Here, we focus on the analysis of Floral Binding Protein2 (FBP2) and FBP5 genes that encode the E-function, which in Arabidopsis has been shown to be required for B and C floral organ identity functions. fbp2 mutants display sepaloid petals and ectopic inflorescences originating from the third floral whorl, whereas fbp5 mutants appear as wild type. In fbp2 fbp5 double mutants, reversion of floral organs to leaf-like organs is increased further. Strikingly, ovules are replaced by leaf-like structures in the carpel, indicating that in addition to the B- and C-functions, the D-function, which specifies ovule development, requires E-function activity. Finally, we compare our data with results obtained using cosuppression approaches and conclude that the latter might be less suited for assigning functions to individual members of the MADS box gene family.


Asunto(s)
Elementos Transponibles de ADN/genética , Flores/genética , Proteínas de Dominio MADS/genética , Petunia/genética , Proteínas de Plantas/genética , Alelos , Secuencia de Bases , Flores/fisiología , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Petunia/fisiología , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...